
Hierarchical Freespace Planning for Navigation in Unfamiliar Worlds

Raj Korpan1 and Susan L. Epstein1,2

1The Graduate Center of The City University of New York
2Hunter College of The City University of New York

rkorpan@gradcenter.cuny.edu, susan.epstein@hunter.cuny.edu

Abstract
Autonomous navigation in a large, complex space requires a
spatial model, but the construction of a detailed map is costly.
This paper demonstrates how two kinds of exploration sup-
port an alternative to metric mapping, one that facilitates ro-
bust hierarchical path planning. High-level exploration builds
a global spatial model whose connectivity supports an ef-
fective, efficient, freespace planner, while low-level, target-
driven exploration addresses areas where the global model
lacks knowledge. Empirical results demonstrate successful
and efficient travel in three challenging worlds.

Introduction
Increasingly, robots deployed in large, complex, indoor
spaces (worlds) are expected to navigate to specific lo-
cations autonomously. Path planning based on a spatial
model proves necessary for such navigation. The problem
addressed here is autonomous navigation in an unfamiliar
world. Traditionally, a metric map would detail obstruc-
tions there and a planner would seek to avoid them. In-
stead of such a map, our planner uses models of the world’s
freespace, the areas that a navigator could occupy, and for-
mulates hierarchical plans. The thesis of this work is that
models of connected freespace based only on data from an
onboard range finder support effective planning for naviga-
tion in an unfamiliar world. The principal contributions of
this paper are two novel exploration algorithms, the mod-
els they produce, and a hierarchical planner, all focused
on freespace. Extensive empirical simulation in challenging
real worlds demonstrates the real-time effectiveness of this
approach and its support for efficient planning and robust
travel that is resilient to robotic error and plan failure.

A target here is a fixed location in the world. The robot’s
task is to visit a randomly selected sequence of targets with-
out an input world model. A plan is a sequence of behav-
iors that, if executed flawlessly, reaches a target. While a
traditional plan identifies a sequence of discrete points to
visit, a freespace plan identifies a sequence of portions of
freespace to visit. Freespace planning facilitates higher-level
plans (e.g., “go to the end of this hallway”) and provides
considerable flexibility for an agent that operates under un-
certainty and in realistic conditions.

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Rather than explore exhaustively or wait while an ad-
equate model gradually develops from experience, active
learning initially explores an unfamiliar world to build two
high-level models. The first model is static; it captures global
connectivity as a network of extended stretches of freespace
that could support long-distance travel. The second model
is dynamic; initially it represents more local and detailed
knowledge from the same exploration. Subsequent target-
driven experience, however, augments the second model
with local detail and may trigger additional, low-level ex-
ploration. The planner exploits both models.

While freespace planning proves empirically adequate for
many tasks, sensor noise, actuator error, and lack of experi-
ence and knowledge challenge this approach. Any plan here
is incomplete unless its freespace model includes the target.
To reach such targets, we supplement high-level exploration
with low-level exploration in the target’s vicinity. Moreover,
plans whose subgoals are continuous areas, rather than dis-
crete points, allow for execution-time responses that com-
pensate for errors and exploit unanticipated opportunities.
The implementation with ROS (Quigley et al. 2009) is for
a set of specific, industry-ready robots, but parameterized
for other platforms. Our approach generalizes across worlds;
the parameters described here were tuned to one world but
worked well in others. The next section provides the context
of this work. Subsequent sections describe the exploration
algorithms, the models, and the hierarchical freespace plan-
ner. Finally, we describe and discuss our empirical results.

Related Work
This work addresses the classic AI trade-off between ex-
ploration for knowledge and exploitation of what is already
known. Traditionally, robot controllers first use mapping to
discover the precise metric location and position of all ob-
structions in an environment, and then construct paths to a
target in the learned map. Other controllers learn a limited
spatial representation and then plan within it. This section
describes the traditional approach and then provides context
for the alternatives.

SLAM (Simultaneous Localization and Mapping) both
localizes (determines the robot’s current location and ori-
entation in the world) and builds a map at once (Durrant-
Whyte and Bailey 2006). Popular SLAM approaches are
probabilistic (Stachniss, Thrun, and Leonard 2016) and use

Figure 1: High-level diagram of our approach

a non-convex cost function (Lu and Milios 1997; Cadena
et al. 2016). They require extensive parameter tuning, are
not robust to outliers, and drive the robot to systematically
visit the entire world.

Active SLAM probabilistically selects actions to reduce
uncertainty in the map and to localize the robot (Leung,
Huang, and Dissanayake 2006). This action selection is of-
ten intractable in practice without additional help, such as
deep reinforcement learning trained on billions of samples
(Wayne et al. 2018). Instead, our approach assumes near-
perfect localization. This could be achieved with physical or
visual landmarks (Se, Lowe, and Little 2002), visual-inertial
odometry (Forster et al. 2017), and WiFi signals (Ocana
et al. 2005), all of which perform well without mapping or
offline learning from vast quantities of data.

Other approaches address uncertainty by exploration.
Frontier-based exploration tracks the boundary between
known and unknown space, and plans paths to that bound-
ary to reduce the area of unknown space (Yamauchi 1997).
Exploration based on information gain (Whaite and Ferrie
1997) or the next best view (González-Banos and Latombe
2002) greedily selects where to explore. More recently, deep
reinforcement learning on office blueprints strategically se-
lected the next area to explore (Zhu et al. 2018). It was lim-
ited, however, to worlds of the type on which it had learned
(e.g., small offices with fewer than 10 rooms), while our
approach requires no preliminary training or categorization.
Rather than focus on reduced uncertainty in the entire map,
we prioritize exploration for high-level connectivity.

Given some experience in a new world, a robot con-
troller constructs a spatial model in which it can reason
about how to get to a target. For example, an occupancy
grid superimposes a uniform grid on the world’s footprint
and records which cells are obstructed. Probabilistic road
maps (Kavraki et al. 1996) and rapidly-exploring random
trees (RRT) (Lavalle 1998) randomly sample freespace to
construct plans but depended on fortuitous, careful location
sampling. Both sampling-based approaches and occupancy
grids, however, require a map of the entire world, and result
in planned sequences of discrete locations that could come
uncomfortably close to obstacles. Other work combined
frontier-based global exploration, next-best-view-based lo-
cal exploration, and RRT-based planning (Selin et al. 2019).
Although similar to our approach, the goal of that work was
efficient mapping of a 3D world, whereas our work uses lim-

ited exploration to facilitate robust navigation.
Instead of planning in a graph of discrete locations, our

robot controller, SemaFORR, represents freespace with a
topological map, a weighted graph where a node repre-
sents a continuous area and an edge label estimates the dis-
tance between its endpoints. Other topological models have
sought to provide a view of freespace connectivity. Some
represented learned topology in first-order logic (Joshi et al.
2012) or as polygons induced with a monocular camera
(Stein et al. 2020). Another approach learned a hierarchical
representation from a map (Tomov et al. 2020), but lacked
SemaFORR’s active learning and task connectivity.

SemaFORR produces hierarchical plans from its world
model. When an inaccurate model, actuator error, or noisy
or incomplete sensor data results in plan failure, replanning
and plan repair may be inadequate or expensive. Instead, hi-
erarchical planning postpones action selection until a step
is executed, and thereby leaves multiple ways to achieve it.
To execute a step, the controller operationalizes it, that is,
replaces it with one or more detailed actions (Kaelbling and
Lozano-Pérez 2011). This delay allows the controller to re-
cover from unpredictable sensor and actuator errors and cap-
italize on unanticipated opportunities.

The work that addresses a task most similar to our own
navigates in campus floor plans (Stein, Bradley, and Roy
2018). It learned to encourage movement along hallways,
but relied on an occupancy grid and chose actions based on
lowest estimated cost. It was trained on thousands of tar-
gets, orders of magnitude more than SemaFORR requires,
and gauged its performance only against a naı̈ve planner that
assumed all space was free until sensed otherwise.

High-level Exploration
In the following, the robot’s pose is 〈x, y, θ〉, where 〈x, y〉 is
its location in a two-dimensional space and θ is its orienta-
tion with respect to some fixed reference frame. A decision
point δ is the robot’s pose and its view V , the set of rays from
the robot’s range finder that extend to the nearest obstruction
in |V | directions. This work simulates a commonly deployed
15GHz onboard laser range finder with a 25m range. It casts
660 rays that report V every 1/3◦ across a 220◦ field of view.
V is local (within the sensor’s range) and partial (not a full
360◦ view). At any δ, SemaFORR chooses an action from
the robot’s deliberately small action repertoire: 6 forward
moves (0.1, 0.2, 0.4, 0.8, 1.6, or 3.2m) and 12 rotations (5,
15, 30, 45, 60, or 90◦ clockwise and counterclockwise). Fig-
ure 1 shows a high-level diagram of our approach, which be-
gins with global exploration and then pursues targets one at
a time with its freespace plans.

Sensor and actuator limitations and errors, along with
real-world spatial irregularities (e.g., indentations and pro-
trusions in walls), make freespace models incomplete and
imprecise. Moreover, algorithms that represent space contin-
uously soon become intractable. SemaFORR discretizes the
robot’s body to a point on a coordinate plane, and its move-
ment as a sequence of points in two-dimensional space.

HLE, SemaFORR’s high-level exploration algorithm, as-
sumes that the world intentionally facilitates travel and that it
cues a navigator with long rays that might be useful to reach

e(cL) = mean e(r)∀r ∈ LeftFocus
e(cR) = mean e(r)∀r ∈ RightFocus
r1 ∼ r2 iff distance < 1m, overlap ≥ (l(r1) + l(r2))/6

Requirements for HLE candidacy
length to width ratio > 1
clear c ≡ all of s(c),m(c), e(c) are unobstructed and

at most 1 has a passage number
c not similar to any c′ ∈ C ∪ E
not a large room ≡ LR(c) = false based on mean,

max, min, median, and σ of l(r), ∀r ∈ V
Requirements for LLE candidacy

possible ≡ r ∈ (C ∪ V ∗ ∪Q from path to T)
l(r) ≥ 2m
r comes within d meters of T
e(r) > .75m ∀ r ∈ possible

Table 1: Computations for exploration

distant locations. HLE’s exploration is a preliminary, time-
limited search for passages, long, relatively narrow extents
of connected freespace. In this one-time active learning, the
robot selects its own goals (“What’s down that hall?”) in a
search for global connectivity. Essentially, HLE maintains
a prioritized list of δ’s that indicate potential passages and
explores them one at a time.

HLE initializes its passage grid as freespace, but can later
relabel cells as obstructed or with a passage number. HLE
defines a long ray r as a line segment with length l(r) ≥ d,
from its start s(r) = 〈x, y〉 where it was sensed to its end-
point e(r). The minimum length d is a parameter that can
be tuned based on the size of the environment and the robot
sensor’s range. (Here, d = 7m.) To allow for sensor error
and spatial irregularities, at each δ HLE forms representative
cues cL and cR from narrow bundles of 41 rays (LeftFocus
and RightFocus) to the robot’s immediate left (θ− 90◦) and
right (θ+ 90◦). A cue starts at the robot’s location and ends
at the average endpoint of the rays in its bundle.

HLE maintains a list C of candidates, dissimilar cues
likely to provide novel, useful information. C prioritizes
cues where l(c) ≥ 2d over those where d ≤ l(c) < 2d.
To facilitate the robot’s return for later investigation of a
new candidate, HLE places it first in the section of C de-
termined by the cue’s length l(c). E records explored candi-
dates, whether or not their search generated a passage.

To become a candidate, a cue must satisfy all the con-
ditions in Table 1. First, it must suggest an area whose
length is greater than its estimated width. HLE estimates the
freespace width of two wider bundles of 136 rays (LeftOpen
and RightOpen) at the periphery of V . A cue cmust be clear,
that is, its start s(c), midpoint m(c), and endpoint e(c) are
unobstructed in the passage grid and at most one of them has
a passage number. A cue must also differ from all candidates
inC andE, as gauged by their overlap (Allen 1983). Finally,
LR, a boolean classifier for large rooms, must return false
on c. LR was developed offline from thousands of views in a
world not used here. When those views were clustered with
2-means, one cluster had the natural label “large room.” We
learned a decision tree on the data labeled by cluster, and

Algorithm 1: Pseudocode for HLE exploration
Input: pose 〈x, y, θ〉, current candidates C, explored

candidates E, time τ , decision limit b
If C = ∅, then find first candidate
while time τ remains and C 6= ∅ do

Select a candidate c = (s(c), e(c))
if c is still a valid candidate then

Assign passage number to c
Record c as explored in E
Pursue(c, pose, time τ ,decision limit b)

end
Build skeleton and highway graph
Pursue(c, pose, time τ , decision limit b)
path← path in history from s(c) to 〈x, y〉
trail← refined version of path
Execute reverse(trail) to reach s(c)
while termination conditions not met do

Rotate toward e(c) as necessary
Move forward
Observe long rays and screen for new candidates
Update cell values in passage grid

end

used the tree’s top two rules to create LR.
Algorithm 1 is pseudocode for HLE. In the robot’s initial

pose in an experiment, HLE rotates the robot in place to find
valid candidates. Then HLE takes candidates from C until it
finds a c that is still clear in the passage grid and dissimilar
from those inE. HLE assigns c a passage number n(c), adds
c to E, and begins to pursue it, that is, it moves the robot to
s(c), rotates it to face the endpoint e(c), and moves the robot
in uniform 0.8m steps toward e(c) with at most b decisions.
At each δ during pursuit, HLE saves new valid candidates,
updates e(c) if it can sense farther, and assigns the label n(c)
to the grid cell that contains δ if it is not already labeled.

HLE begins with the robot at the first candidate’s start, but
any other candidate c began at an earlier δ. To reach s(c),
HLE constructs a trail, a refined version of the path that
eliminates extraneous steps, such as loops and detours, on
the path it took from s(c) to the robot’s current location, and
follows that trail backward. The trail-learning algorithm, in
a single pass, retraces the decision points along a path back-
ward from its endpoint to its start. Each time it can sense a
decision point closer to the start, it eliminates any interven-
ing ones. Those remaining, including the start and endpoint,
are collected as trail markers. Because exploration forms a
continuous path, the trail exists and is correct (reaches its
endpoint if executed flawlessly).

Real-world candidate pursuit often encounters spatial ir-
regularities in a passage. If the robot comes too close to an
obstruction, HLE has it turn away from it, take a small step
forward, and then continue toward e(c). If a passage curves
slightly or contains a protrusion, HLE centers e(c) in the
freespace directly in front of the robot. As a result, HLE may
detect diagonal passages.

There are several termination conditions for candidate

pursuit. HLE stops pursuit of c if it makes more than b deci-
sions to explore it, has reached the end of the passage (i.e., is
within 0.5m of e(c) or has only 0.1m of freespace directly
before it) or has just made so hard a turn that it is considered
to be in a different passage (i.e., its current orientation differs
by more than 45◦ from its average orientation in the current
passage thus far). The robot could also encounter an area too
wide to be a passage, that is, more like a large room. Once
the robot has moved at least half c’s estimated length, pursuit
of c also stops when HLE estimates the passage’s length to
be less than 1.5 times its width. Estimated length is how far
HLE has pursued c plus how far the robot can sense along its
current θ. Estimated width is the sum of the average length
of the representative cues cL and cR at each δ in the current
passage thus far. These termination conditions may produce
an explored passage that is shorter than d in length.

Real-world passage walls rarely align neatly with grid-
cell borders, so HLE uses occupancy mapping (Moravec and
Elfes 1985) during pursuit to label some cells in the passage
grid. Within LeftFocus and RightFocus, HLE relabels a free
cell no more than 2m from the robot with the current passage
number. It also relabels any obstructed cells there within 4m
of the robot. These values are based on the typical width of
hallways in built, indoor worlds. Figure 2(a) shows an ex-
ample of a passage grid after HLE reached τ = 30 minutes.

Low-level Exploration
LLE, SemaFORR’s low-level, goal-driven exploration algo-
rithm, searches for rays that may lead it to a target T . LLE
triggers when SemaFORR has no plan or it has completed its
plan but did not reach T , indications that the current model
offers no further guidance to T . Like HLE, LLE assembles
and explores candidates. LLE draws its candidate rays from
those that remained when HLE terminated, from Q (the V s
at each δ in the path so far to the current target), and from
the rays V ∗ saved in SemaFORR’s model (detailed in the
next section). Because LLE is target-driven, the conditions
for candidacy are with respect to T , as shown in Table 1.
LLE orders its candidates by their distance to T and stops
search when it senses T .

Algorithm 2 is pseudocode for LLE. To explore candi-
date c, LLE constructs a plan to the start of c and then a
sequence of 20 evenly spaced waypoints (locations) along it
to keep them at most 1.25m apart based on our robot’s max-
imum sensor range of 25m. If execution reaches e(c) or the
robot loses track of c (cannot sense at least one of its next
two waypoints on three consecutive decision cycles), LLE
discards that candidate and considers the next one. While it
is active, LLE continues to screen all rays from each δ for
qualified new candidates.

Once no candidates remain, LLE expands its search with
an inclusion grid that indicates which cells are covered by
SemaFORR’s learned spatial model. In increments of 1m,
LLE bins, by their distance to T , all rays in V with end-
points marked as unincluded in the grid. It selects one ray at
random from the bin closest to T , discards all the others, ex-
plores it as if it were a candidate, and updates inclusion grid
cells at each δ to avoid subsequent repetitive search. Mean-
while, LLE watches for valid candidates. If one arises, LLE

Algorithm 2: Pseudocode for LLE exploration
Input: current pose 〈x, y, θ〉, view V , and target T ,
remaining HLE candidates C, rays V ∗ stored in the
spatial model, views Q during path to T , distance
threshold d
possible← C ∪ V ∗ ∪Q
V alidRays← candidates(possible, T, d)
Sort V alidRays by distance to T
Initialize inclusion grid
while LLE is active do

if V alidRays 6= ∅ then
Select candidate c from V alidRays
Explore(c, V alidRays, True)

else if V alidRays = ∅ then
Update inclusion grid
ClosestBin← ClosestRays(V ,T)
if ClosestBin 6= ∅ then

Select random r ∈ ClosestBin
Explore(r, V alidRays, False)

else
Generate and follow plan to cell in
inclusion grid with minimum dist. to T

end
Explore(c, V alidRays, IsCandidate)
Generate waypoints for c
while able to sense waypoints do

Visit next remaining waypoint
Append valid candidates from δ to V alidRays
if ¬IsCandidate and V alidRays 6= ∅ then

return
end

abandons ray exploration and pursues its new candidate in-
stead. Otherwise, after it explores a ray, the robot should be
in a new location, from which ray exploration begins again.
Finally, when all current rays are marked as covered, LLE
formulates a plan to the included cell closest to T , where it
may then sense new uncovered rays.

Models of Freespace
After HLE exhausts its candidates or its time limit, Se-
maFORR builds two models of the freespace in its environ-
ment. One is a highway graph, a static initial global model of
long extents in freespace. The other is a skeleton, a dynamic
model that delineates connectivity among smaller areas of
freespace and changes during subsequent travel to targets.
Both are described below, with an example in Figure 2.

To detect global connectivity, SemaFORR begins with
an unlabeled freespace grid and revisits the decision points
along the continuous path P the robot took under HLE. As
SemaFORR moves along the line segment between each pair
of consecutive decision points in P , it labels as freespace
each grid cell through which it passes. To smooth this record
of visited freespace, SemaFORR also labels as freespace any
unlabeled cell when at least three of the four cells that share
an edge with it are labeled as freespace.

(a) Distinctly colored passages in the final passage grid (b) Distinctly colored highways in the freespace grid

(c) Highway graph (d) Skeleton after 40 targets

Figure 2: Freespace models created for G5 after 30 minutes of exploration. This space measures 110× 70m.

Only a contiguous horizontal or vertical freespace extent
at least d long in the freespace grid becomes a highway.
(This may introduce discontinuities.) Grid cells in the (typi-
cally small) areas where a vertical and a horizontal highway
overlap form an intersection. A highway bounded by only
one intersection is a spur; its other endpoint is relabeled as
an intersection. Spreading activation smooths each highway
and intersection and labels them uniquely (e.g., Figure 2(b)).

From the freespace grid, SemaFORR then derives a high-
way graph, a connected, planar graph that represents inter-
sections as nodes labeled with their centroids and represents
highways as edges that connect their endpoints (e.g., Fig-
ure 2(c)). An edge’s label is a trail learned from travel along
that highway and its cost, the Euclidean distance between
the centroids of its endpoints. By construction, one endpoint
of a spur has degree one, that is, is a dead-end in the highway
graph. If processing has disconnected the highway graph,
SemaFORR retains only the connected component with the
most nodes. For example, the horizontal passage at the top
right in Figure 2(a) went uncovered in Figure 2(b) because
its vertical connection to the freespace grid was too short.
(The second freespace model, however, recovers it.)

The building blocks for SemaFORR’s more detailed spa-
tial model are regions. At decision point δ = 〈x, y, θ〉 with
view V , SemaFORR captures the local freespace around
the robot as a region, a circle with center 〈x, y〉 and ra-
dius min{length(r)|r ∈ V }. From some orientations, this
may overestimate freespace, and so may change when the

robot turns in place. A region’s 360◦ visibility V ∗ records
the maximum distance sensed at 1◦ intervals from anywhere
within it and the locations where those maxima occurred.
Along with their V ’s and V ∗’s, accumulated contradictory
or overlapping regions are resolved after each target. Re-
gions record only freespace, not obstructions.

The skeleton summarizes local freespace connectivity as a
connected graph whose nodes are regions (Figure 2(d)). An
edge there indicates that the robot moved directly between
them with no other region intervening. An edge’s label is
a trail derived from the shortest such path, along with its
length. With perfect knowledge, a region of degree one in a
skeleton would be a dead-end. SemaFORR builds an initial
skeleton from HLE’s exploration path P and refines it after
each target. A region that overlaps a highway or an intersec-
tion records that commonality for subsequent planning.

The highway graph abstracts the initial skeleton into
longer contiguous chunks of freespace that support longer
moves and faster planning. The skeleton is connected be-
cause it first arises from HLE’s continuous exploration path
and is then augmented by a sequence of targets, each of
which begins where the previous one ended.

Planning in the Freespace Models
SemaFORR’s hierarchical graph planner, HP, flexibly plans
a path to target T in both the skeleton and the highway
graph. The skeleton plan captures low-level spatial details

(a) Skeleton plan (b) Highway plan

Figure 3: In G5, from the robot (red square) to its target (yellow star) (a) a skeleton plan (blue) through the (pink) regions and
(b) a highway plan (black) with a circled skeleton plan through regions that connects the highway plan to the target.

and incorporates knowledge gleaned during pursuit of pre-
vious targets. The highway plan exploits global connectivity
and is focused on long-distance travel. By their construc-
tion, however, neither necessarily abides by the triangle in-
equality that A* requires to find a least-cost path. Instead,
SemaFORR uses Dijkstra’s algorithm to find shortest paths
(Dijkstra 1959). This suffices because both graphs are at
least an order of magnitude smaller than a usefully fine grid-
based graph, with nodes typically of degree less than five.

For any location L, its skeleton surrogate is the region
L̂, defined as the first of the following: the region that con-
tains L, the closest region with visibility V ∗ that senses L,
or a high-degree region near L. To plan in the skeleton for a
robot at R with a target at T , HP finds R̂ and T̂ and builds
a skeleton plan that is a shortest path sequence of regions:

R̂ −→ . . . −→ T̂
Similarly, for any location L, its highway surrogate is the

intersection L∗, defined as the first of the following: an in-
tersection that contains L, the closer endpoint of a high-
way that contains L, an intersection that overlaps L̂, or
the closer endpoint of a highway that overlaps L̂. If nei-
ther L nor L̂ overlaps the highway graph, HP uses Dijk-
stra’s algorithm to search the skeleton from L̂ for the short-
est path to any region L∗ that overlaps the highway graph.
HP’s highway plan takes the robot along a shortest path se-
quence of intersections from R∗ through the highway graph
to T ∗. Unless R∗ = R̂, the highway plan is preceded by a
shortest skeleton path from R̂ to R∗, and unless T ∗ = T̂ ,
it is followed by a shortest skeleton path from T ∗ to T̂ :

R̂ −→ R∗ −→ . . . −→ T ∗ −→ T̂
SemaFORR calls HP only once for a target. To prevent un-
necessary highway travel, HP builds both a skeleton plan
and a highway plan to reach T , and returns the shorter one.
Figure 3 shows examples in G5.

Operationalization
A hierarchical HP plan for navigation defers explicit action
selection until execution time, when SemaFORR replaces its

current high-level plan step with a sequence of lower-level
steps. This operationalization allows the controller to decide
opportunistically and to compensate robustly for sensor and
actuator error. To operationalize a waypoint w, SemaFORR
selects an action to approach it, either a move toward w
directly or, based on one-step lookahead restricted to V , a
turn intended to precede such a move. To operationalize a
region G with center g, SemaFORR substitutes waypoints
opportunistically. When the robot can sense g, SemaFORR
replaces G with g. Otherwise, if the robot is in region R
SemaFORR takes the known sequence of waypoints from
the trail recorded on the edge from R to G, which is likely
longer than a direct step.

To operationalize an intersection I with centroid i, Se-
maFORR treats i as a waypoint and approaches it. To op-
erationalize a highway H between intersections IA and IB ,
first SemaFORR tries to identify the regions A and B that
overlap H and are closest to IA and IB , respectively. If it
can identify A and B and can find a skeleton path between
them through a sequence of regions all of which overlap H ,
SemaFORR replaces H with that sequence. Otherwise, Se-
maFORR replaces H with the sequence of waypoints from
the trail saved on the edge labels in the highway graph. The
resultant sequences of regions or waypoints are readily op-
erationalized, as described above.

HP’s hierarchical plans allow SemaFORR to take unantic-
ipated opportunities that arise as it executes a plan. To find
novel shortcuts, it considers two plan steps at a time, includ-
ing the one it is about to operationalize. If, for example, a
plan lists the remaining sequence A → B → C of regions,
once the robot is in A it may be able to sense C’s center.
A novel shortcut would eliminate B from the plan and ap-
proach C instead, which SemaFORR does, whether or not
the three regions’ centers are colinear.

Hybrid controllers combine reactivity and planning. An
autonomous car, for example, has an intended route, but also
provisions for emergency braking and lane following. Se-
maFORR is such a hybrid. At each decision point, action
selection combines reactivity, planning, and heuristics that
exploit low-level information in the skeleton.

(a) H10 (b) M5

Figure 4: H10 and M5 have configurations different from G5

SemaFORR incorporates several reactive procedures to
contend with anticipated situations. They go toward a sensed
target, do not take actions that collide with obstacles or re-
peatedly rotate in place, realign to get to a sensed target
or waypoint, turn to face a nearby waypoint, and leave a
confined space. When SemaFORR cannot execute its op-
erationalized plan and no other procedure takes control, it
relies on heuristics to select an action. (For more details on
these other procedures, see (Epstein and Korpan 2020).) Fi-
nally, when SemaFORR completes HP’s plan and has still
not reached the target, it relies on LLE to try to find a way.

Empirical Evaluation
Privacy and security concerns discourage a shared dataset on
which to benchmark real-world indoor navigation. Instead,
we evaluate SemaFORR on three large, complex environ-
ments. G5 is a 107-year-old building about the size of an
entire city block and was last renovated in 2009. Figure 4
shows the other two worlds. H10 is the tenth floor of a re-
peatedly renovated 1937 building, and M5 is the fifth floor
of New York’s Museum of Modern Art. For realistic assess-
ment, our simulation introduces small random errors into the
sensor data and into action execution by small changes in the
time allocated to the robot’s motors.

For each world, we randomly generated 5 ordered target
sets of 40 freespace locations. The robot’s next target is usu-
ally outside the robot’s 25m sensor range; the average Eu-
clidean distance across all target sets between consecutive
targets (which ignores obstacles) was 40.9m for G5, 40.0m
for H10, and 45.8m for M5. SemaFORR pursues a target
until it succeeds (comes within ε = 1m of it) or fails (ex-
ceeds a prespecified step limit s per target). After each tar-

get, SemaFORR updates its regions and skeleton from its
experience. In a run the robot explores with HLE and then
visits one target set within the decision-step limit. Based on
preliminary testing in G5, all constants, including d = 7m
and b = 750 steps per exploration candidate, were set once
by hand and applied uniformly to all 3 worlds. All grid cells
were 1× 1m.

Simulations ran SemaFORR and ROS Indigo on a Dell
Precision Tower 7910 with 16 GB memory and an Intel
Xeon(R) 2.40GHz x 16 CPU. After extensive experiments
with a range of times for global exploration (10 to 60 min-
utes) and step limits (50 to 1000 steps), we balanced satis-
factory performance and reasonable time for real-world ex-
ploration on M5 with τ = 30 minutes and s = 500 steps
and on H10 and G5 with τ = 30 and s = 750.

Performance metrics were success rate (fraction of targets
reached), total wall clock time (including exploration, model
construction, planning, decisions, and movement) and time
per target in seconds, distance traveled in meters (including
any exploration), and coverage (fraction of freespace iden-
tified in the model). Table 2 reports SemaFORR’s perfor-
mance. Despite the variability in time and distance across
the five target sets, shown by their standard deviations, suc-
cess rate and coverage were relatively consistent.

Figure 5 compares performance in 40 runs of SemaFORR
(8 runs with each target set) to several alternative ap-
proaches. GREEDY, like the baseline in (Stein, Bradley, and
Roy 2018), has a simple navigation strategy: take actions
that move in the direction of the target but avoid obstacles
and do not plan. WANDER builds an initial skeleton with
HLE but does not plan. SKELETAL develops and plans in
SemaFORR’s skeleton only during tasks on random targets,
without any exploration or highway graph. EXSK uses HLE
and LLE but plans only in the skeleton.

WANDER significantly improves on GREEDY’s meager
success rate, and SKELETAL succeeds even more often than
WANDER in H10 and G5. SKELETAL is also faster per target
and travels less distance to reach its targets than WANDER.
This supports our thesis that freespace planning supports
satisfactory navigation in large, complex spaces, without a
costly detailed map of the world or training on thousands of
targets. Both EXSK and SemaFORR succeed more often and
reach targets faster than SKELETAL. Although HP typically
finds shorter plans in the highway graph than in the skele-
ton, both models stem from the same exploration path, and a
highway plan is ultimately operationalized as a sequence of
regions. As a result, EXSK and SemaFORR succeed about
equally often, but SemaFORR travels significantly less dis-

World Size(m) Rooms Free(m2) Dec. s HLE τ Success Time(sec) Time/target Dist.(m) Coverage
M5 54× 62 14 1585 500 30 99.8% 3193.3 34.8 4485.7 94.1%

(0.3%) (75.7) (1.9) (67.0) (0.5%)
H10 89× 58 75 2627 750 30 89.6% 6771.6 131.5 4820.1 43.9%

(3.7%) (833.6) (22.3) (506.7) (1.9%)
G5 110× 70 180 4021 750 30 91.2% 5564.2 94.1 5730.0 41.8%

(2.4%) (550.7) (13.8) (400.2) (1.1%)

Table 2: SemaFORR experiments in three challenging worlds. Standard deviations over the five target sets are in parentheses.

(a) On success rate (b) On time per target (seconds) (c) On total distance (meters)

Figure 5: The impact of reasoning and planning. An asterisk denotes better performance (p ≤ 0.05) than the value to the left.

Figure 6: Performance improvements when SemaFORR ex-
plores with HLE instead of frontier exploration.

tance than EXSK to reach its targets in M5 and G5.
A second experiment compared HLE to frontier explo-

ration (Juliá, Gil, and Reinoso 2012). We implemented and
tested frontier exploration with the same step and time limits
as HLE. The results in Figure 6 support our hypothesis that
HLE’s strategic focus on high-level connectivity is useful.
SemaFORR with HLE outperformed frontier exploration; it
succeeded more often in H10 and G5, and in all three worlds
was faster, traveled less, and provided greater coverage.

SemaFORR navigates in real time; its average decision
cycle is 0.5 seconds. Because the freespace models are an
order of magnitude smaller than a usefully fine occupancy
grid, HP is significantly faster than A*. In H10, for example,
planning averaged 0.5 seconds per target, versus 15 seconds
for A* in an occupancy grid (Epstein and Korpan 2019).

Discussion
SemaFORR’s ability to balance exploration for knowledge
with exploitation of its model to reach targets generalizes
across different worlds. While hierarchical freespace plan-
ning suffices for simpler unknown worlds like M5, explo-
ration is key in G5 and H10, the most challenging floors
in their buildings. Indeed, navigation in G5 is so difficult
that its occupants eventually color-coded the walls and hung
art for guidance. Current work includes evaluation on ad-

ditional worlds. For example, SemaFORR achieved 91%
success given the same parameter values in another large
(130 × 81m) university building with 187 rooms, a space
also notorious for its ability to confound its visitors.

This work highlights significant differences between in-
door navigation and autonomous driving. Most of an in-
door world is freespace that permits novel shortcuts; an au-
tonomous vehicle is rigorously constrained to a small frac-
tion of its environment. Our robot is expected to learn mod-
els of its world; an autonomous vehicle has a presumed-
accurate map. Design of indoor worlds may address secu-
rity or aesthetics as well as efficiency; vehicle highways are
intended to expedite travel. Instead of road signs, we as-
sumed near-perfect localization, that is, the robot knew ex-
actly where it and the target were.

SemaFORR was inspired by work that found neural cor-
relates for hierarchical planning and operationalization (Bal-
aguer et al. 2016) and for chemical reinforcement of active
spatial learning not motivated by escape (Mun et al. 2015).
HLE was inspired by psychological evidence that young
humans have an innate proclivity to explore long extents
(de Hevia et al. 2014) and that active learning results in more
expert navigation (Chrastil and Warren 2013). The freespace
models were inspired by sketches after active exploration in
complex virtual worlds (Chrastil and Warren 2013).

Although this paper focuses on indoor, built spaces, at
its core is the discovery and exploitation of a hierarchy
of spatial affordances that provide high-level connectivity
within an environment. SemaFORR could be generalized for
other spaces (e.g., outdoor, aerial, or underwater) with an
expanded definition of connectivity and freespace. For ex-
ample, an outdoor robot faced with different terrains could
interpret “freespace” as “easy to traverse,” so that explo-
ration sought connectivity among long stretches of such ter-
rain. An aerial robot in a building could similarly inter-
pret “freespace” so that plans would avoid areas with strong
drafts or fans. A plan would be a sequence of steps in such
redefined freespace where SemaFORR could flexibly select
actions to transition between those areas.

Exploration provides more knowledge, as measured by
coverage. The highway graph’s global knowledge prepares
for unknown targets, and LLE expands upon it. For example,

after HLE on G5, initial coverage averaged 31.6% but rose
to 41.8% by the end of a run. This improved SemaFORR’s
performance on subsequent targets (e.g., it was more likely
to reach the last 5 targets in G5 than the earlier ones). Se-
maFORR summarizes this knowledge efficiently; it builds
the passage grid, freespace grid, and highway graph only
once and then discards the grids. This construction is fast; in
G5, for example, it averaged 6.8 seconds.

Although evaluation here only compared against fron-
tier exploration while the rest of the navigation architec-
ture was held unchanged (Figure 6), comparison with other
navigation architectures in the same large-scale environ-
ments is generally prohibitive because many are not avail-
able with open-source ROS implementations. Future work
will compare SemaFORR with Active SLAM with RRT and
topology-based navigation. Additionally, a highway-biased
version of RRT instead of a sequence of regions could allow
flexibility in plan construction.

The spatial models not only speed planning (compared
to A* on an occupancy grid) but also allow the planner to
defer operationalization on broadly-defined subgoals (e.g.,
movement between regions) until execution time. As a re-
sult, plans are robust to realistic actuator or sensor errors as
well as to previously undetected obstructions (e.g., the small
circles in Figure 3(b) that represent support columns). Hi-
erarchical planning in the two models also allows the con-
troller to recognize and exploit novel shortcuts and to sup-
port intervention when the robot fails to make progress. HP
exploits the spatial models, and thereby reaches more targets
in G5 and H10 faster and/or with shorter paths than SKELE-
TAL, which lacks exploration and the highway graph.

The highway grid is static, but SemaFORR continues to
modify the skeleton after each target. It adds highway-like
chains of regions and dead-ends (rooms) to the original
skeleton. Although planning may become somewhat slower
as the skeleton grows, it also supports more informed deci-
sions and addresses targets in previously unvisited areas.

Current work evaluates performance on larger task sets
and repetition on the same targets. Based on trials with other
parameter settings, however, neither more HLE time nor a
higher step limit is likely to reach every target in H10 and
G5. We believe metareasoning and reactive planners could
help. For example, metareasoning would trigger periodically
to restart HLE when a new passage is detected. Current work
addresses these ideas and dynamic time allocation for explo-
ration based on coverage and |C|. Current work also evalu-
ates SemaFORR with imperfect localization, where our sim-
ulator adds uniform noise to the robot’s pose.

SemaFORR readily reasons over finite action sets to pro-
duce the trajectories required. In preliminary work, evalua-
tion with much larger action sets did not significantly change
performance. Although a larger action set could be neces-
sary for three-dimensional freespace or other domains that
require precision, a limited action set did not prevent nu-
anced trajectories in two-dimensional freespace.

Several issues remain. HLE only explores if it has at least
one candidate. Like architects, we have our navigator enter
a world where it can detect a candidate (e.g., at the eleva-
tors). Search for a first candidate instead is a topic for future

work. While H10 is smaller than G5, HLE does not always
capture all H10’s highways because H10 lacks the cycles
that make it easier in G5 to double back from another di-
rection. Reordering HLE’s candidates to drive to uncovered
areas could address that, but would also require more time.
HLE captures some diagonal passages but, as formulated,
makes a diagonal highway less likely. Of course, only ex-
haustive exploration can guarantee perfect knowledge of an
environment. Without it, navigation and plans for it may be
less than ideal. Although a thoughtful teacher familiar with
a world could supplement HLE with an instructive sequence
of targets, that approach would sacrifice autonomy.

In this work, a target is a fixed location in the environ-
ment, selected randomly in advance during experimental de-
sign. In previous work, SemaFORR navigated successfully
to a moving target that had a tracking device (Aroor, Epstein,
and Korpan 2018). SemaFORR could be extended to use its
freespace model to predict probable locations of a moving
target and use LLE to explore the area where the target was
last sensed. In that earlier work, we also extensively evalu-
ated navigation in environments crowded with other agents.
Given a map, we have modeled crowds with various proper-
ties and developed appropriate and successful probabilistic
learning mechanisms for them. SemaFORR was robust to
the addition of these dynamic obstacles. Future work will
adapt HLE, LLE, and HP for unfamiliar worlds populated
with human crowds.

SemaFORR has multiple potential applications. Archi-
tects could use it during design, to analyze spatial connectiv-
ity. The models, particularly the highway graph, could pre-
dict connectivity on other floors of the same building. Res-
cue teams could use the models to find alternate routes when
floor plans become invalid.

Meanwhile, SemaFORR’s ability is noteworthy. It learns
freespace models quickly and navigates with them effi-
ciently. Its high-level exploration provides a global frame-
work for learning, one that low-level exploration aug-
ments when a target lies in unknown territory. Hierarchical
freespace planning then exploits this knowledge to support
effective, robust navigation in complex worlds.

Acknowledgments
This work was supported in part by The National Science
Foundation under CNS-1625843 and CF-1231216. The au-
thors thank Matthew Wilson for discussions on the neuro-
science of navigation, Anoop Aroor for Menge ROS, Gil
Dekel for his pioneering work on the spatial model, and the
anonymous referees for their many constructive suggestions.

References
Allen, J. F. 1983. Maintaining knowledge about temporal
intervals. Communications of the ACM 26(11): 832–843.
Aroor, A.; Epstein, S. L.; and Korpan, R. 2018. Online learn-
ing for crowd-sensitive path planning. In Int. Conf. on Au-
tonomous Agents and MultiAgent Systems, 1702–1710.
Balaguer, J.; Spiers, H.; Hassabis, D.; and Summerfield, C.
2016. Neural mechanisms of hierarchical planning in a vir-
tual subway network. Neuron 90(4): 893–903.

Cadena, C.; Carlone, L.; Carrillo, H.; Latif, Y.; Scaramuzza,
D.; Neira, J.; Reid, I.; and Leonard, J. J. 2016. Past, present,
and future of simultaneous localization and mapping: To-
ward the robust-perception age. IEEE Transactions on
robotics 32(6): 1309–1332.
Chrastil, E. R.; and Warren, W. H. 2013. Active and passive
spatial learning in human navigation: Acquisition of survey
knowledge. Journal of experimental psychology: learning,
memory, and cognition 39(5): 1520.
de Hevia, M. D.; Izard, V.; Coubart, A.; Spelke, E. S.; and
Streri, A. 2014. Representations of space, time, and num-
ber in neonates. Proceedings of the National Academy of
Sciences 111(13): 4809–4813.
Dijkstra, E. W. 1959. A note on two problems in connexion
with graphs. Numerische mathematik 1(1): 269–271.
Durrant-Whyte, H.; and Bailey, T. 2006. Simultaneous lo-
calization and mapping: part I. IEEE robotics & automation
magazine 13(2): 99–110.
Epstein, S. L.; and Korpan, R. 2019. Planning and Ex-
planations with a Learned Spatial Model. In Timpf, S.;
Schlieder, C.; Kattenbeck, M.; Ludwig, B.; and Stewart, K.,
eds., COSIT, volume 142 of LIPIcs, 22:1–22:20.
Epstein, S. L.; and Korpan, R. 2020. Metareasoning and
Path Planning for Autonomous Indoor Navigation. In ICAPS
2020 Workshop on Integrated Execution / Goal Reasoning.
Forster, C.; Carlone, L.; Dellaert, F.; and Scaramuzza, D.
2017. On-Manifold Preintegration for Real-Time Visual-
Inertial Odometry. IEEE Trans. Robotics 33(1): 1–21.
González-Banos, H. H.; and Latombe, J.-C. 2002. Naviga-
tion strategies for exploring indoor environments. The Inter-
national Journal of Robotics Research 21(10-11): 829–848.
Joshi, S.; Schermerhorn, P.; Khardon, R.; and Scheutz, M.
2012. Abstract planning for reactive robots. In 2012
IEEE International Conference on Robotics and Automa-
tion, 4379–4384. IEEE.
Juliá, M.; Gil, A.; and Reinoso, O. 2012. A comparison
of path planning strategies for autonomous exploration and
mapping of unknown environments. Autonomous Robots
33(4): 427–444.
Kaelbling, L. P.; and Lozano-Pérez, T. 2011. Hierarchical
task and motion planning in the now. In ICRA, 1470–1477.
Kavraki, L. E.; Svestka, P.; Latombe, J.-C.; and Overmars,
M. H. 1996. Probabilistic roadmaps for path planning
in high-dimensional configuration spaces. IEEE Trans.
Robotics Autom. 12(4): 566–580.
Lavalle, S. M. 1998. Rapidly-exploring random trees : a new
tool for path planning. Technical Report TR 98-11, Iowa
State.
Leung, C.; Huang, S.; and Dissanayake, G. 2006. Active
SLAM using Model Predictive Control and Attractor based
Exploration. In IROS, 5026–5031. IEEE.
Lu, F.; and Milios, E. E. 1997. Robot Pose Estimation in Un-
known Environments by Matching 2D Range Scans. Journal
of Intelligent and Robotic Systems 18(3): 249–275.

Moravec, H.; and Elfes, A. 1985. High resolution maps from
wide angle sonar. In Proceedings. 1985 IEEE international
conference on robotics and automation, volume 2, 116–121.
Mun, H.-S.; Saab, B.; Ng, E.; McGirr, A.; Lipina, T.; Gondo,
Y.; Georgiou, J.; and Roder, J. 2015. Self-directed explo-
ration provides a Ncs1-dependent learning bonus. Scientific
Reports 5(1): 1–13.
Ocana, M.; Bergasa, L.; Sotelo, M.; Nuevo, J.; and Flores,
R. 2005. Indoor robot localization system using WiFi signal
measure and minimizing calibration effort. In International
Symposium on Industrial Electronics, volume 4, 1545–1550.
Quigley, M.; Conley, K.; Gerkey, B. P.; Faust, J.; Foote,
T.; Leibs, J.; Wheeler, R.; and Ng, A. Y. 2009. ROS: an
open-source Robot Operating System. In ICRA Workshop
on Open Source Software, volume 3.2, 5.
Se, S.; Lowe, D.; and Little, J. 2002. Mobile robot local-
ization and mapping with uncertainty using scale-invariant
visual landmarks. The International Journal of robotics Re-
search 21(8): 735–758.
Selin, M.; Tiger, M.; Duberg, D.; Heintz, F.; and Jensfelt, P.
2019. Efficient autonomous exploration planning of large-
scale 3-D environments. IEEE Robotics and Automation
Letters 4(2): 1699–1706.
Stachniss, C.; Thrun, S.; and Leonard, J. 2016. Simulta-
neous Localization and Mapping, chapter 46, 1153–1176.
Springer, 2 edition.
Stein, G. J.; Bradley, C.; Preston, V.; and Roy, N. 2020. En-
abling topological planning with monocular vision. In In-
ternational Conference on Robotics and Automation, 1667–
1673. IEEE.
Stein, G. J.; Bradley, C.; and Roy, N. 2018. Learning over
Subgoals for Efficient Navigation of Structured, Unknown
Environments. In CoRL, volume 87 of Proceedings of Ma-
chine Learning Research, 213–222. PMLR.
Tomov, M. S.; Yagati, S.; Kumar, A.; Yang, W.; and Gersh-
man, S. J. 2020. Discovery of hierarchical representations
for efficient planning. PLoS computational biology 16(4):
e1007594.
Wayne, G.; Hung, C.-C.; Amos, D.; Mirza, M.; Ahuja, A.;
Grabska-Barwinska, A.; Rae, J.; Mirowski, P.; Leibo, J. Z.;
Santoro, A.; et al. 2018. Unsupervised predictive memory in
a goal-directed agent. ArXiv preprint arXiv:1803.10760.
Whaite, P.; and Ferrie, F. P. 1997. Autonomous exploration:
Driven by uncertainty. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence 19(3): 193–205.
Yamauchi, B. 1997. A frontier-based approach for au-
tonomous exploration. In International Symposium on Com-
putational Intelligence in Robotics and Automation, 146–
151. IEEE.
Zhu, D.; Li, T.; Ho, D.; Wang, C.; and Meng, M. Q.-H. 2018.
Deep reinforcement learning supervised autonomous explo-
ration in office environments. In IEEE International Con-
ference on Robotics and Automation, 7548–7555. IEEE.

